Characterizing the Universe with Nth-Order Correlation Functions

Ashley J Ross, Robert J Brunner, Adam D Myers

What do we want?

What do we want?

- Quantitative measure of structure
- Comparable to models based on fundamental physics

What do we want?

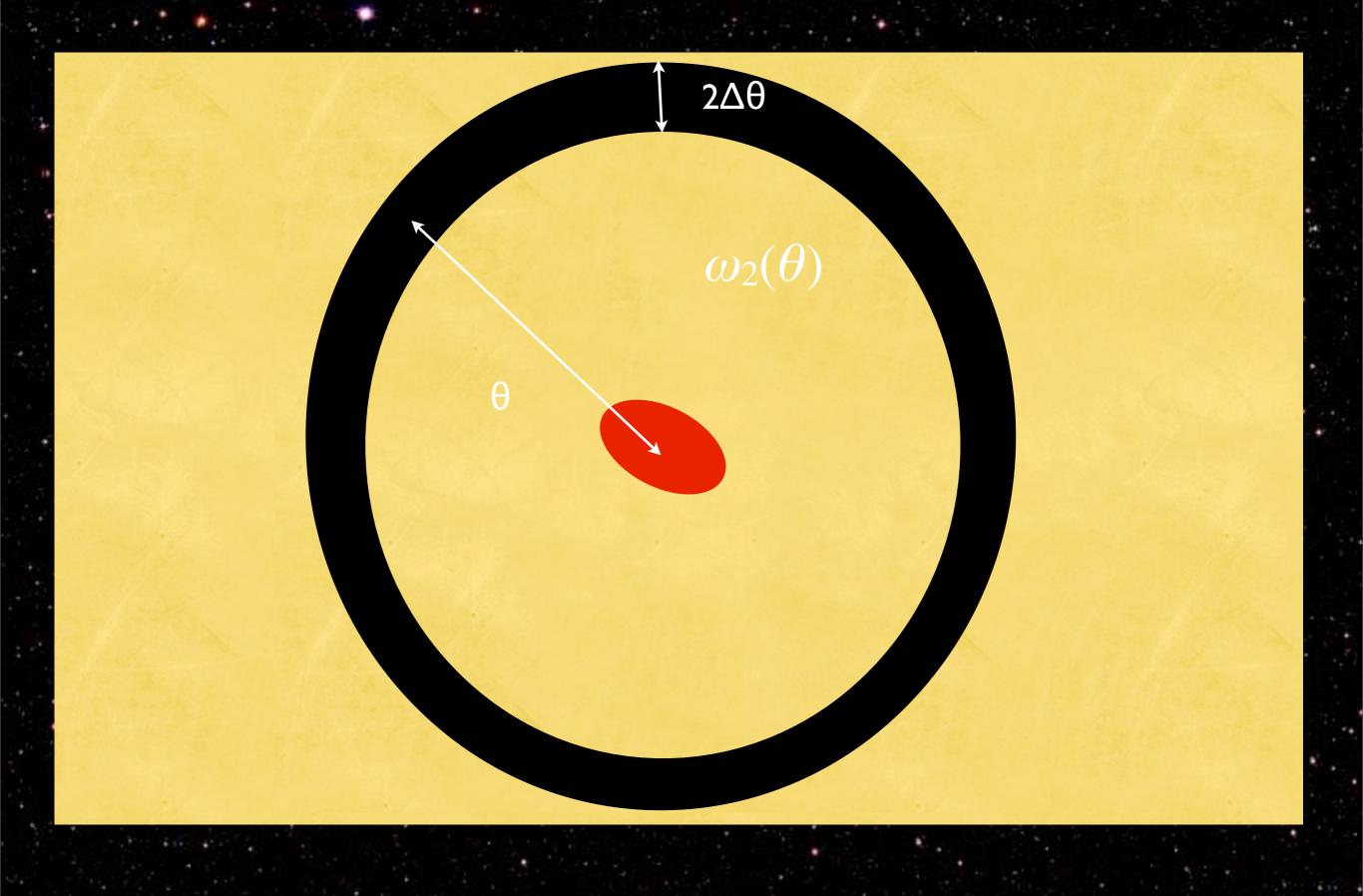
- Quantitative measure of structure
- Comparable to models based on fundamental physics
- → Correlation Functions
- Key component of concordance cosmology
- In future nature of dark energy, primordial non-Gaussianity, galaxy formation and evolution

Outline

- Nth-order correlation functions
 - Definition
 - Methods of measurement
 - Methods of interpretation
- Selected results
 - Measuring σ₈ with LRGs
 - Nth-order clustering by color & redshift
- Future prospects

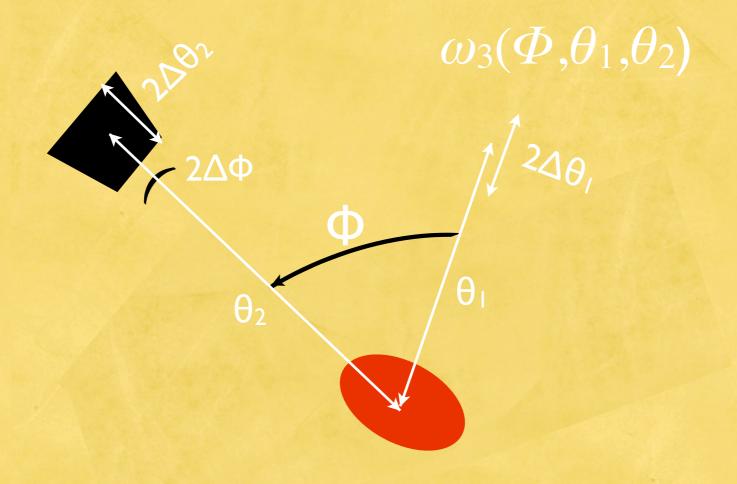
Nth-Order Correlation Functions

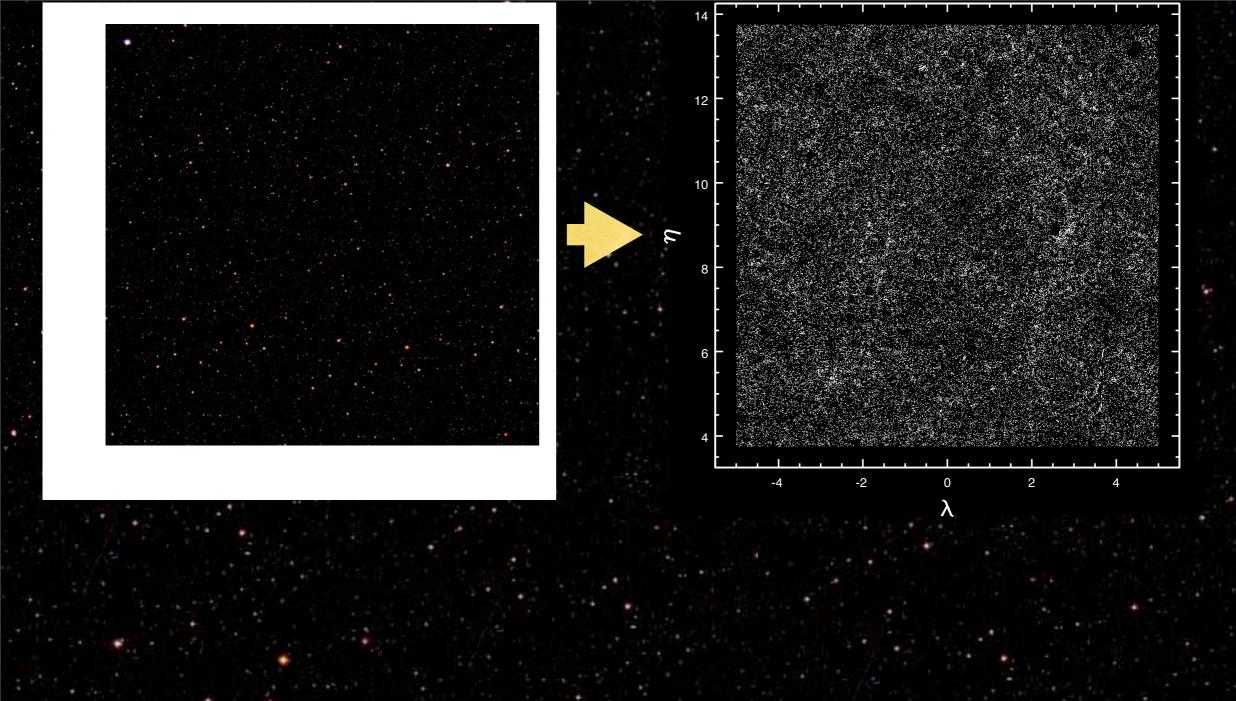
- N-point angular correlation function, ω_N :
 - Given a random object in a location, $\omega_2(\theta)$ likelihood that another object will be found at distance $\theta \pm \Delta \theta$
 - $\omega_3(\Phi,\theta_1,\theta_2)$ likelihood of finding object at distance $\theta_1\pm\Delta\theta$ and another object at $\theta_2\pm\Delta\theta$ with vertexes making angle $\Phi\pm\Delta\Phi$

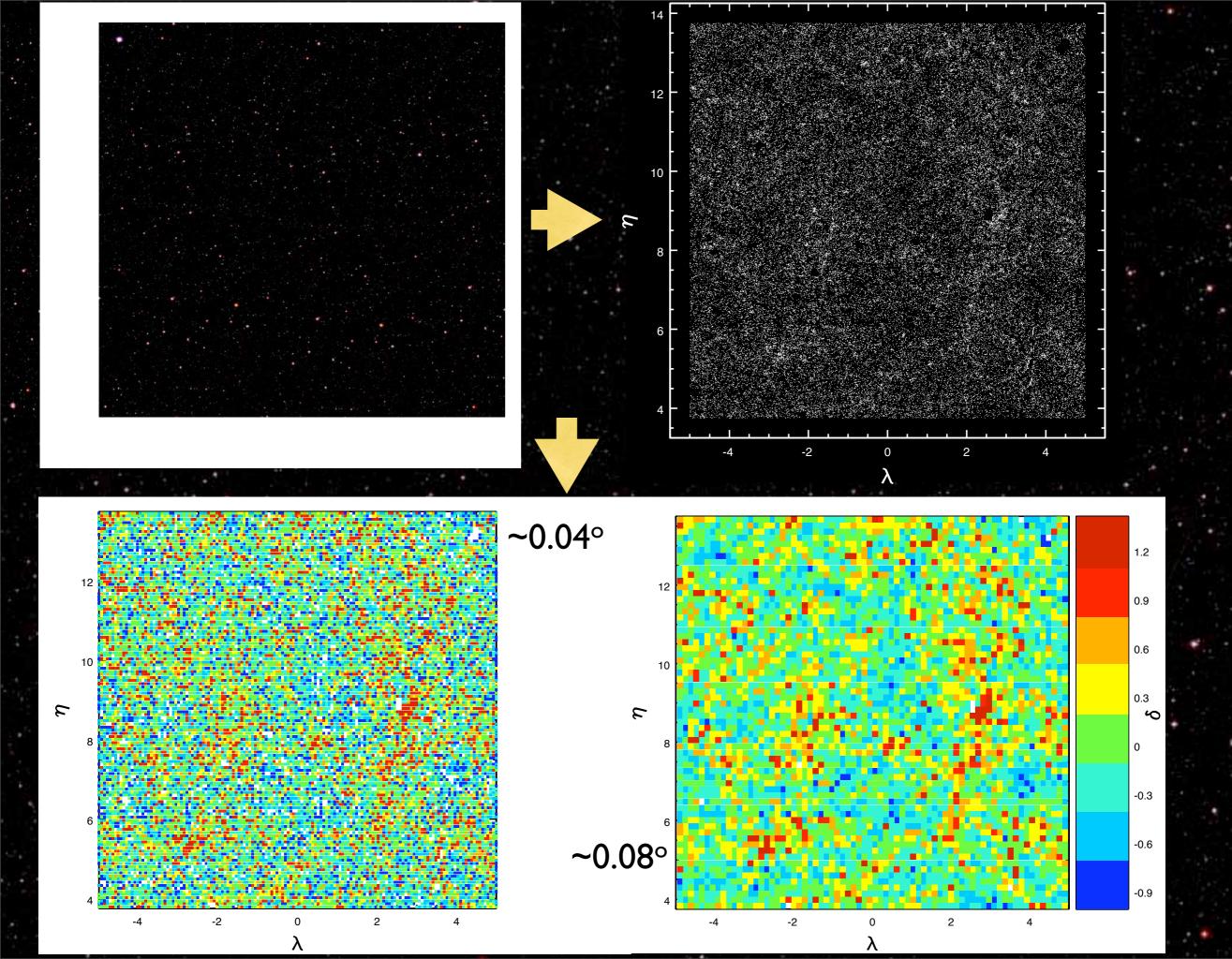


Nth-Order Correlation Functions

- N-point angular correlation function, ω_N :
 - Given a random object in a location, $\omega_2(\theta)$ likelihood that another object will be found at distance $\theta \pm \Delta \theta$
 - $\omega_3(\Phi,\theta_1,\theta_2)$ likelihood of finding object at distance $\theta_1\pm\Delta\theta$ and another object at $\theta_2\pm\Delta\theta$ with vertexes making angle $\Phi\pm\Delta\Phi$







Nth-Order Correlation Functions

- ullet Overdensity, $\delta = \frac{N}{\langle N \rangle} 1$
 - N-point angular correlation function, ω_N :

•
$$\omega_2(\theta) = \langle \delta_i \delta_j \rangle$$
, $\omega_3(\phi, \theta_1, \theta_2) = \langle \delta_i \delta_j \delta_k \rangle$, ...

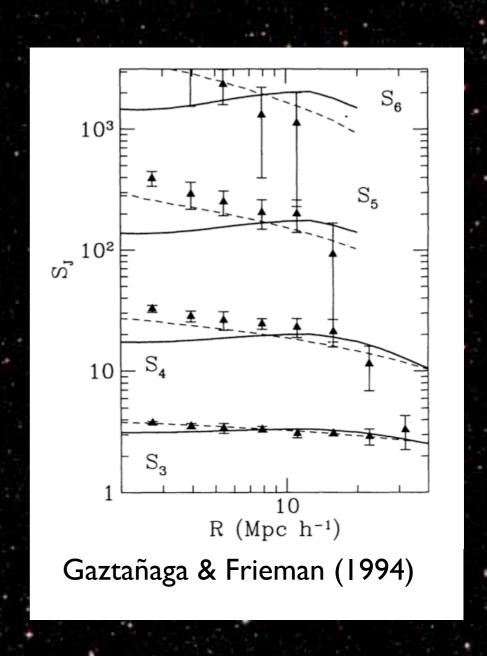
• N-point area averaged angular galaxy correlation function, $\bar{\omega}_N$:

•
$$\bar{\omega}_N(\theta) = \langle \delta^N \rangle_c$$
, $s_N(\theta) = \frac{\bar{\omega}_N}{\bar{\omega}_2^{N-1}}$

For gaussian density field, higher-order terms vanish

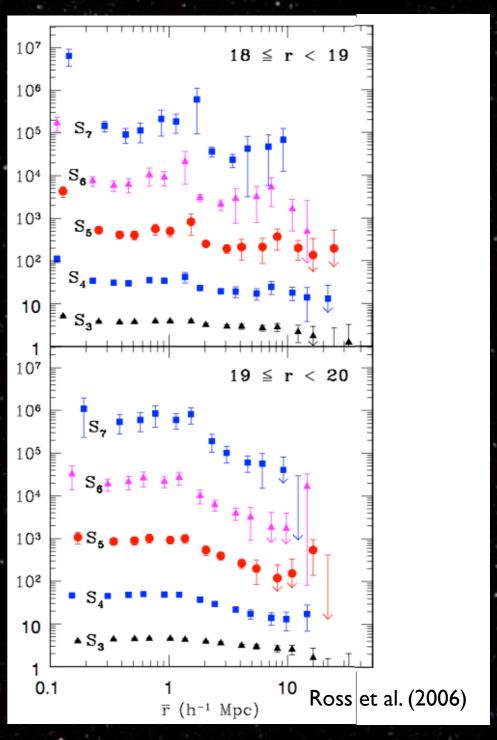
Higher-Order Correlations

- Gaussian or nearly Gaussian density field evolves under gravitational collapse
- non-linear PT with CDM model predicts hierarchy in S_N
- Measurements generally agree with theory



Higher-Order Correlations

- Gaussian or nearly Gaussian density field evolves under gravitational collapse
- non-linear PT with CDM model predicts hierarchy in S_N
- Measurements generally agree with theory



Modeling $\omega_{ m N}$

• Given Smith et al. (2003) P(k):

$$\begin{split} &\omega_{2,DM}(\theta) = \frac{\pi}{c} \int_0^\infty \left(\frac{dN}{dz}\right)^2 H(z) dz \int_0^\infty P(k,z) J_0[k\theta\chi(z)] k dk \\ &\bar{\omega}_{2,DM}(\theta) = \frac{\pi}{c} \int_0^\infty \left(\frac{dN}{dz}\right)^2 H(z) dz \int_0^\infty P(k,z) W_{2\mathrm{D}}^2[k\theta\chi(z)] k dk \\ &\bar{\omega}_{3,DM}(\theta) = 6 \left(\frac{\pi}{c}\right)^2 \int_0^\infty \left(\frac{dN}{dz}\right)^3 H^2(z) dz \times \left[\frac{6}{7} \left(\int_0^\infty k dk P(k,z) W_{2\mathrm{D}}^2[k\theta\chi(z)]\right)^2 \right. \\ &\left. + \frac{1}{2} \int_0^\infty k dk P(k,z) W_{2\mathrm{D}}^2[k\theta\chi(z)] \int_0^\infty k^2 dk P(k,z) W_{2\mathrm{D}}[k\theta\chi(z)] W_{2\mathrm{D}}'[k\theta\chi(z)] \right] \\ &W_{2\mathrm{D}}(x) = 2 \frac{J_1(x)}{x} \end{split}$$

• Can also use HOD to find $P_{gal}(k,z)$

Bias

- Bias relates galaxy clustering to dark matter clustering
- Local bias model:

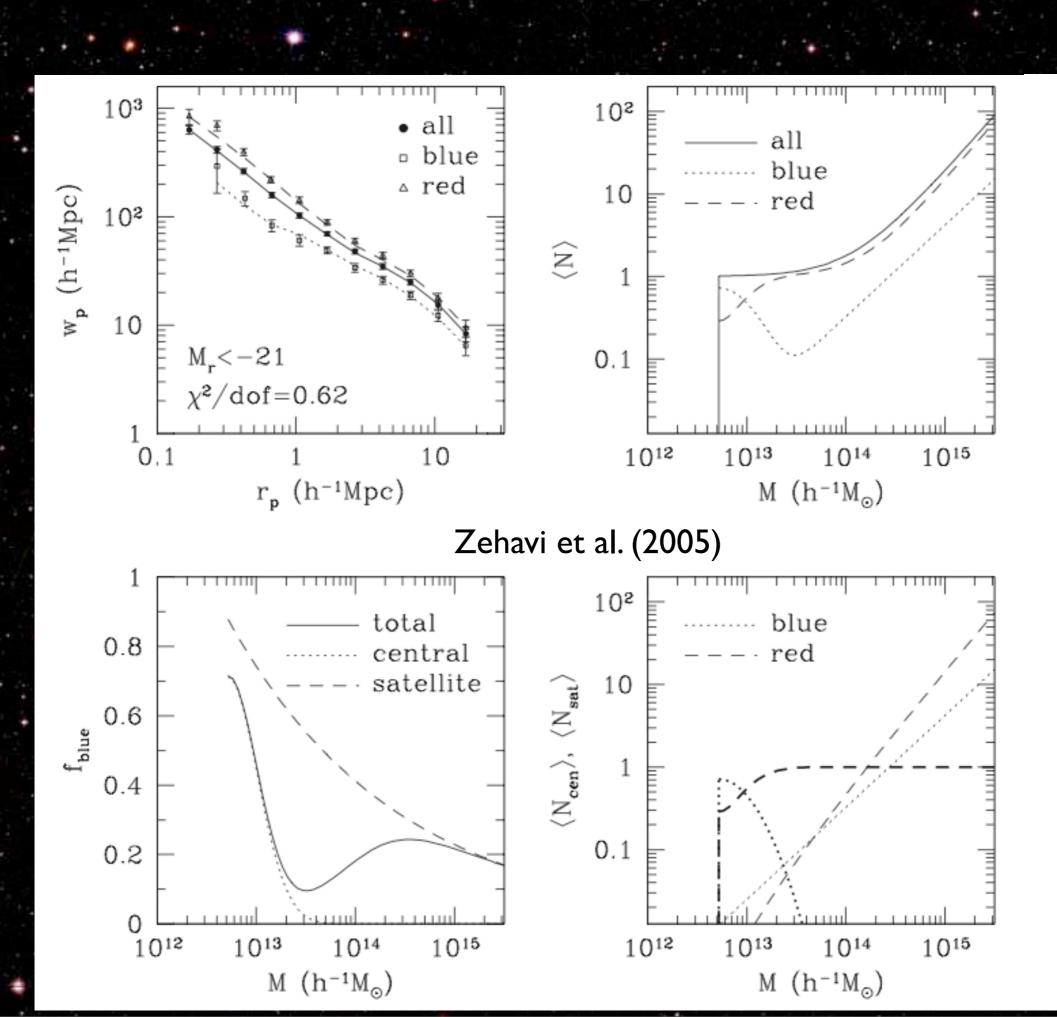
$$\delta_g = F(\delta_{\rm DM}) \Rightarrow \delta_g = b_1 \delta_{\rm DM} + 0.5 b_2 \delta_{\rm DM}^2 + O(\delta_{\rm DM}^3)$$

$$\delta_{\rm DM} = b_1^{-1} \delta_g - 2b_1^{-3} b_2 \delta_g^2 + O(\delta_g^3)$$

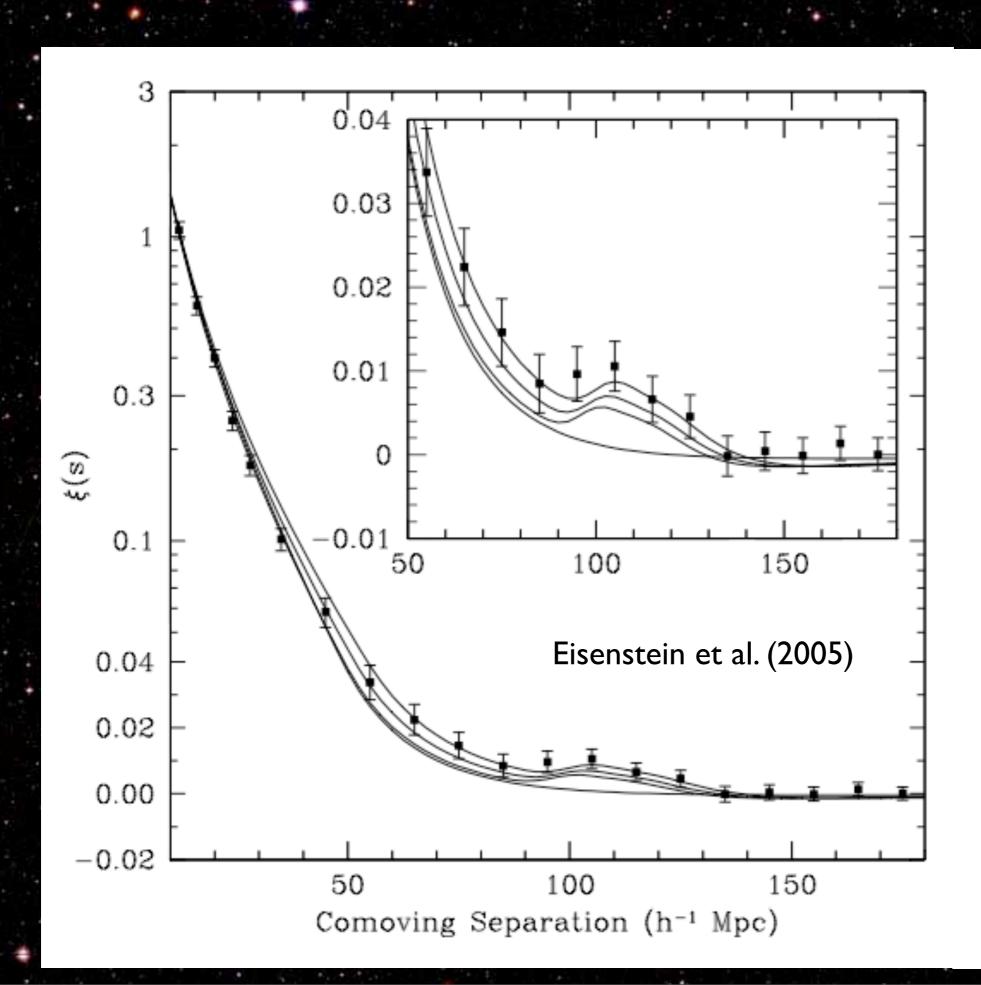
• For $r_{\rm eq} \gtrsim 10 h^{-1} {
m Mpc}$ and $c_2 = b_2/b_1$:

$$\omega_2 \cong b_1^2 \omega_{2,\text{DM}}$$
 $s_3 \cong b_1^{-1} (s_{3,\text{DM}} + 3c_2)$

- Two main pursuits:
 - 1) Study galaxies themselves
 - 2) Measure cosmological parameters



- Two main pursuits:
 - 1) Study galaxies themselves
 - 2) Measure cosmological parameters



- Two main pursuits:
 - 1) Study galaxies themselves
 - 2) Measure cosmological parameters

- Two main pursuits:
 - I) Study galaxies themselves
 - 2) Measure cosmological parameters
- Doing one usually requires assumptions about the other
 - Mass scale of HOD is dependent on cosmology
 - LRG analysis requires knowledge of largescale clustering vs. matter
- Higher-order correlations provide extra constraints, allowing less assumptions, more selfconsistent measurements

O8

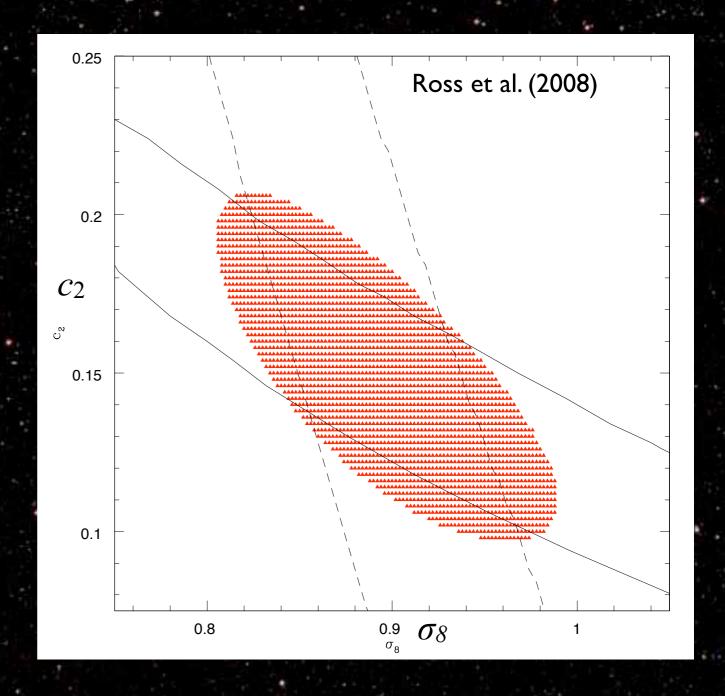
- \bullet σ_8 is the rms mass fluctuation at $8~h^{-1}$ Mpc
- $\delta_{\rm DM} \propto \sigma_8 \, {\rm so} \, b_1 \propto 1/\sigma_8$
- This makes it nuisance parameter for 2-point measurements
- WMAP: $\sigma_8 = 0.92 \pm 0.10 \rightarrow 0.744^{+0.05}_{-0.06} \rightarrow 0.796$ ± 0.036

Measuring Os

- Adding in 3-point measurements offers extra constraint and thus ability to calculate σ_8
- One method:
 - Measure s_3 for galaxies, determine $c_2(\sigma_8)$
 - Turn δ_g to $\delta_{\rm DM}$ with assumed b_1 and b_2 , measure corrected ϖ_2 , match to model $\varpi_{2,{\rm DM}}$, yields separate $c_2(\sigma_8)$

Testing on Millennium Simulation

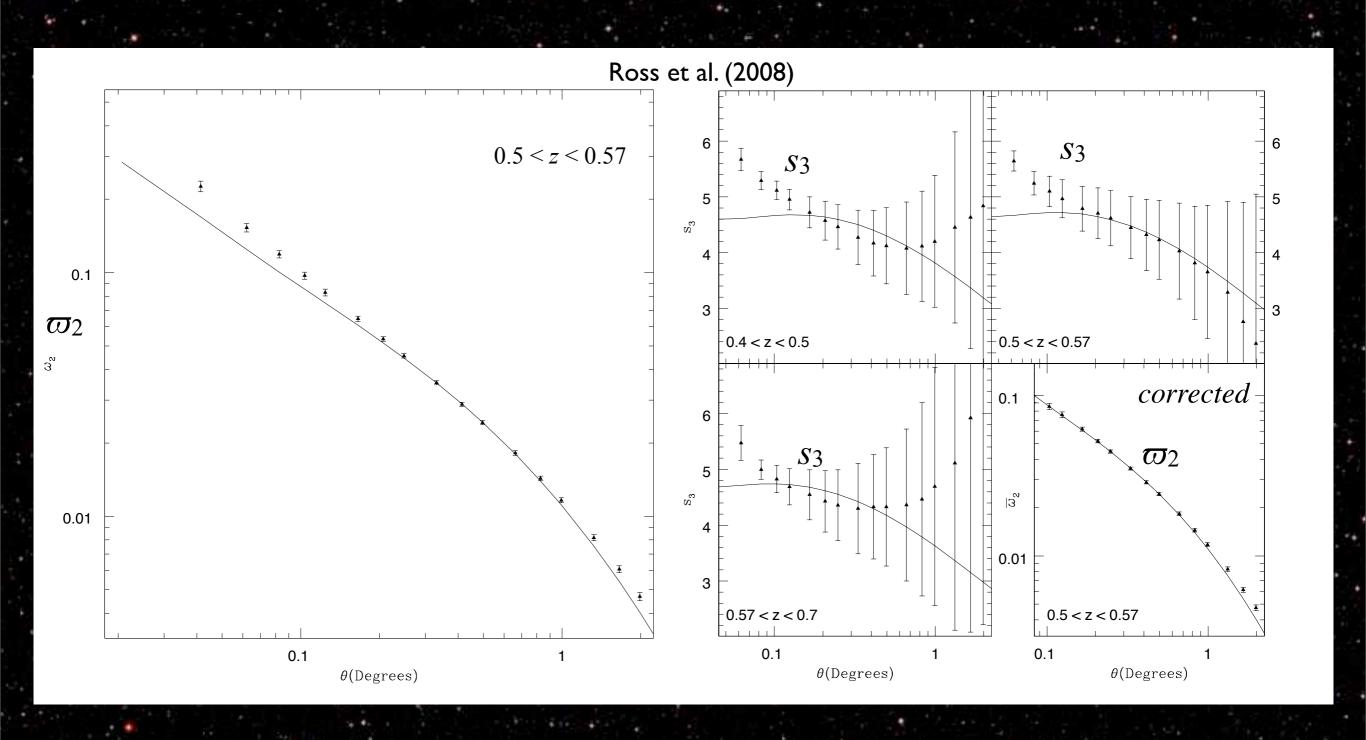
- $M_r < -23$ and B R > 1.4from Blaizot et al. (2005)
- Found $\sigma_8 = 0.898 \pm 0.062$
- (Input is $\sigma_8 = 0.9$)



SDSS LRG Catalog

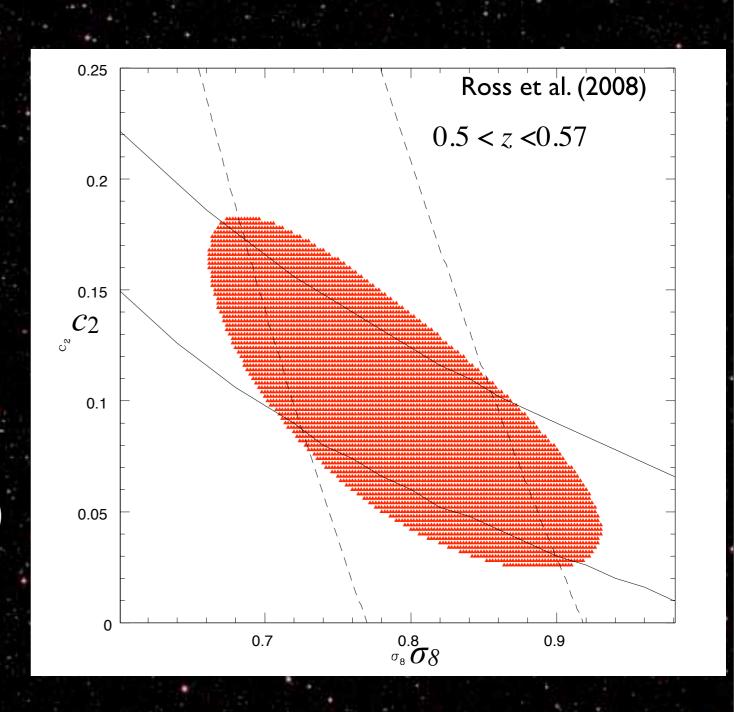
- SDSS DR5 LRGs with MegaZ-LRG color cuts (Collister et al. 2007) and ANNz for photozs and star/galaxy separation
- Over I.6 million LRGs with 0.4 < z < 0.7 and median redshift of 0.52
- Split into three distinct redshift ranges with median redshifts of 0.47, 0.53, and 0.61

LRG Results

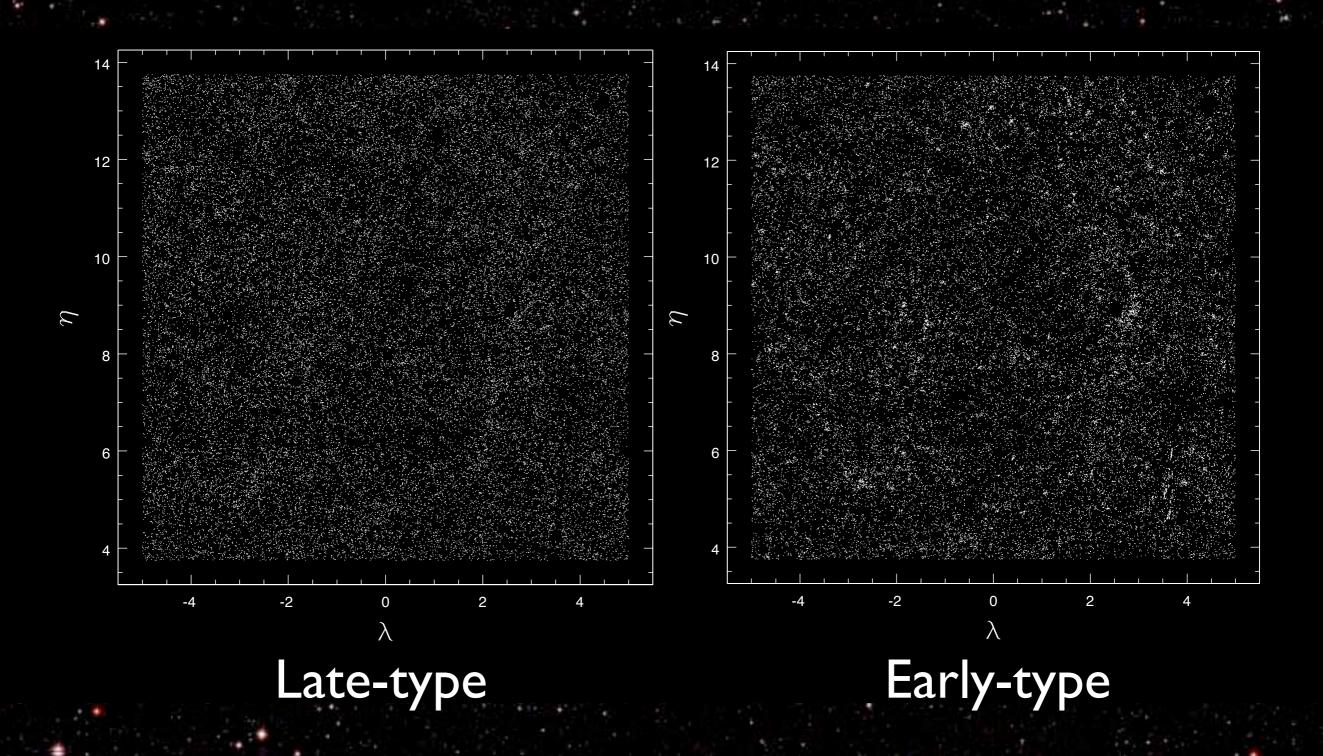


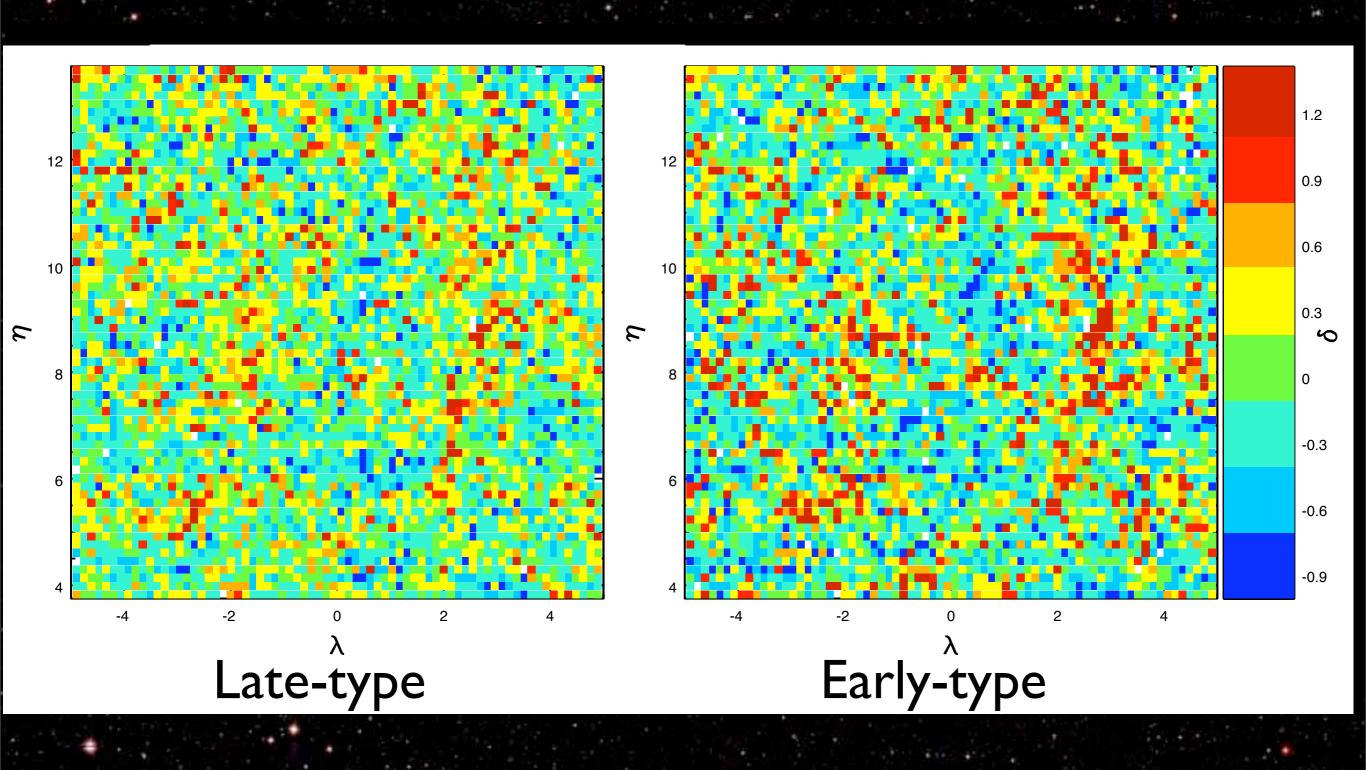
LRG Results

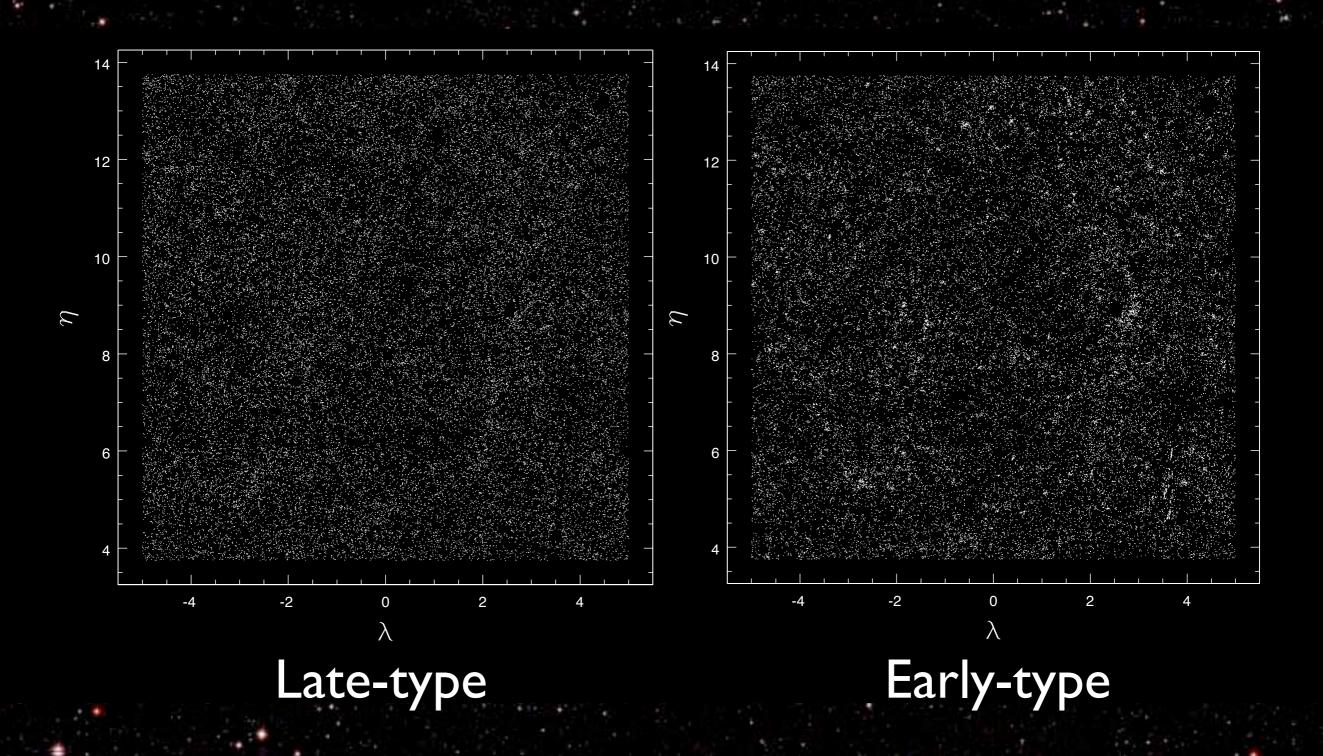
- Measured $\sigma_8 = 0.78 \pm 0.08$, 0.80 ± 0.09 , and 0.80 ± 0.09
- Combine for $\sigma_8 = 0.79$ ± 0.05
- Find $b_1 = 1.47 \pm 0.09$, 1.65 ± 0.09 , 1.80 ± 0.10
- $c_2 = 0.09 \pm 0.04, 0.09 \pm 0.05, 0.09 \pm 0.03$



- Red (early-type) galaxies more clustered than blue (late-type) galaxies
 - Early-types found in clusters, more latetypes in field
 - b_1, b_2 much larger for early-type
- Blue galaxies increasingly more clustered with redshift
 - Downsizing



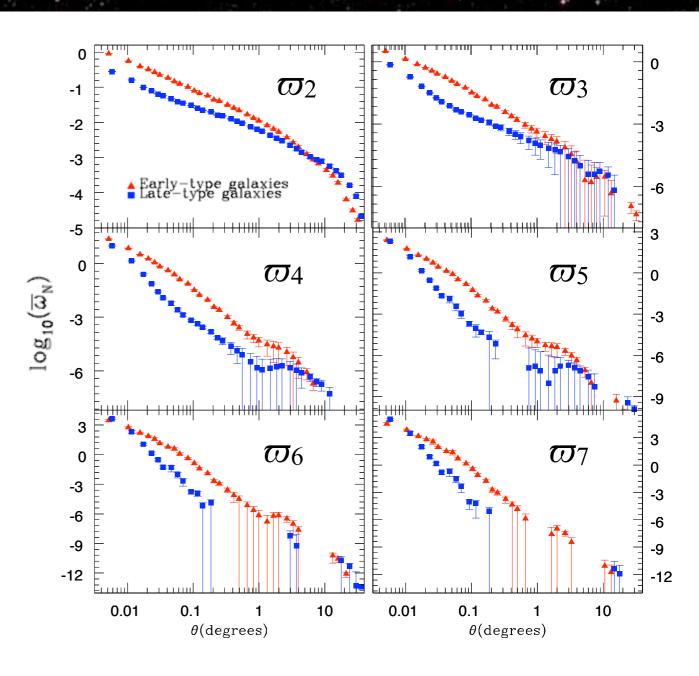




- Red (early-type) galaxies more clustered than blue (late-type) galaxies
 - Early-types found in clusters, more latetypes in field
 - b_1, b_2 much larger for early-type
- Blue galaxies increasingly more clustered with redshift
 - Downsizing

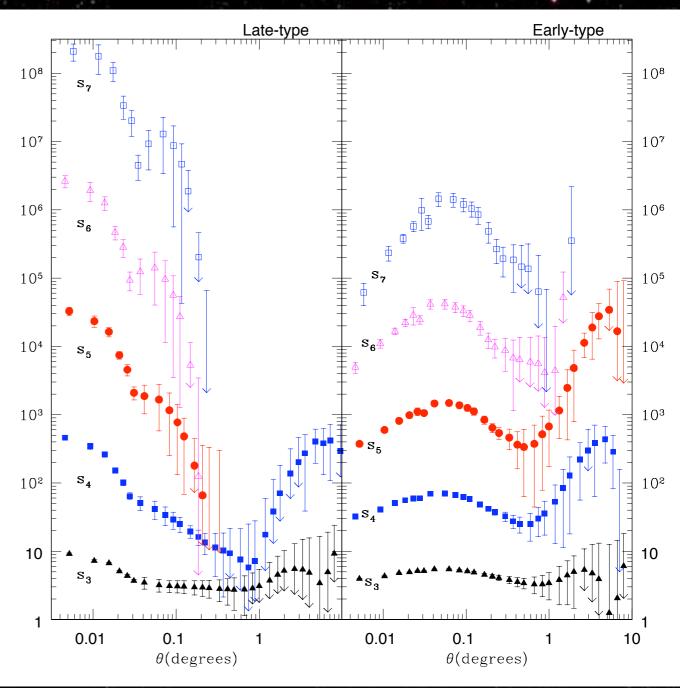
Higher-order Clustering by Color

- SDSS DR5 galaxies separated by u-r = 2.2
- Upturn in ϖ_N at small scales



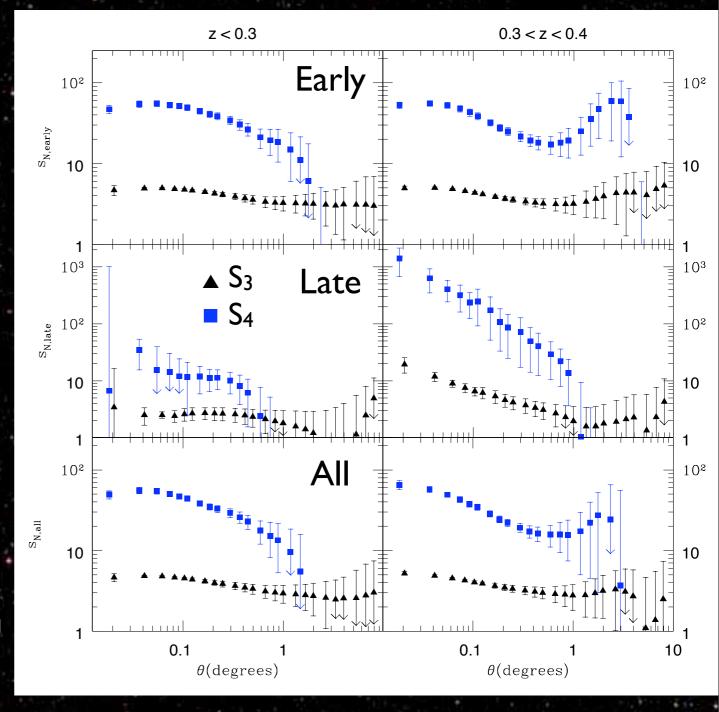
Higher-order Clustering by Color

- SDSS DR5 galaxies separated by u-r = 2.2
- Upturn in ϖ_N at small scales



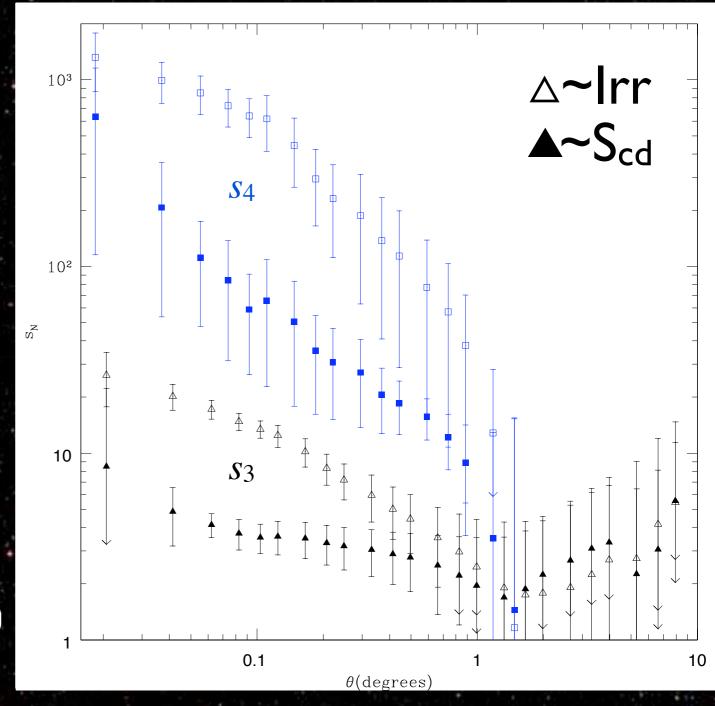
Redshift Evolution

- Galaxies taken from SDSS DR5 photoz M_r
 < -20.5
- Huge differences in small-scale clustering of late-types with z
- Bias changes from $b_1, c_2 = 1.04 \pm 0.02, -0.83 \pm 0.21$ to $b_1, c_2 = 1.25 \pm 0.02, -0.38 \pm 0.30$



Redshift Evolution

- Galaxies taken from SDSS DR5 photoz M_r
 < -20.5
- Huge differences in small-scale clustering of late-types with z
- Bias changes from $b_1, c_2 = 1.04 \pm 0.02, -0.83 \pm 0.21$ to $b_1, c_2 = 1.25 \pm 0.02, -0.38 \pm 0.30$



Late-type Galaxies

HOD model:

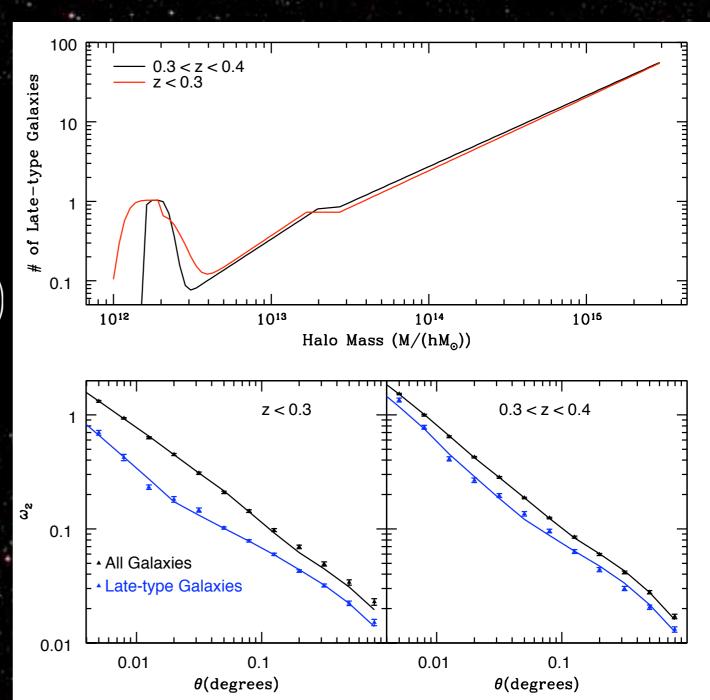
$$\langle N_c \mid M \rangle = 0.5 \left(1 + \operatorname{erf} \left(\frac{M/M_{cut}}{\sigma_{cut}} \right) \right)$$

$$\langle N_s \mid M \rangle = 0.5 \left(1 + \operatorname{erf} \left(\frac{M/M_{cut}}{\sigma_{cut}} \right) \right) \times (M/M_0)^{\alpha}$$

$$\langle N_c \mid M \rangle_{late} = \langle N_c \mid M \rangle \times fc_0 \exp\left(\frac{-\log_{10}(M/M_{cut})}{2\sigma_c^2}\right)$$

$$\langle N_s \mid M \rangle_{late} = \langle N_s \mid M \rangle \times fs_0 \exp\left(\frac{-\log_{10}(M/M_0)}{\sigma_s}\right)$$

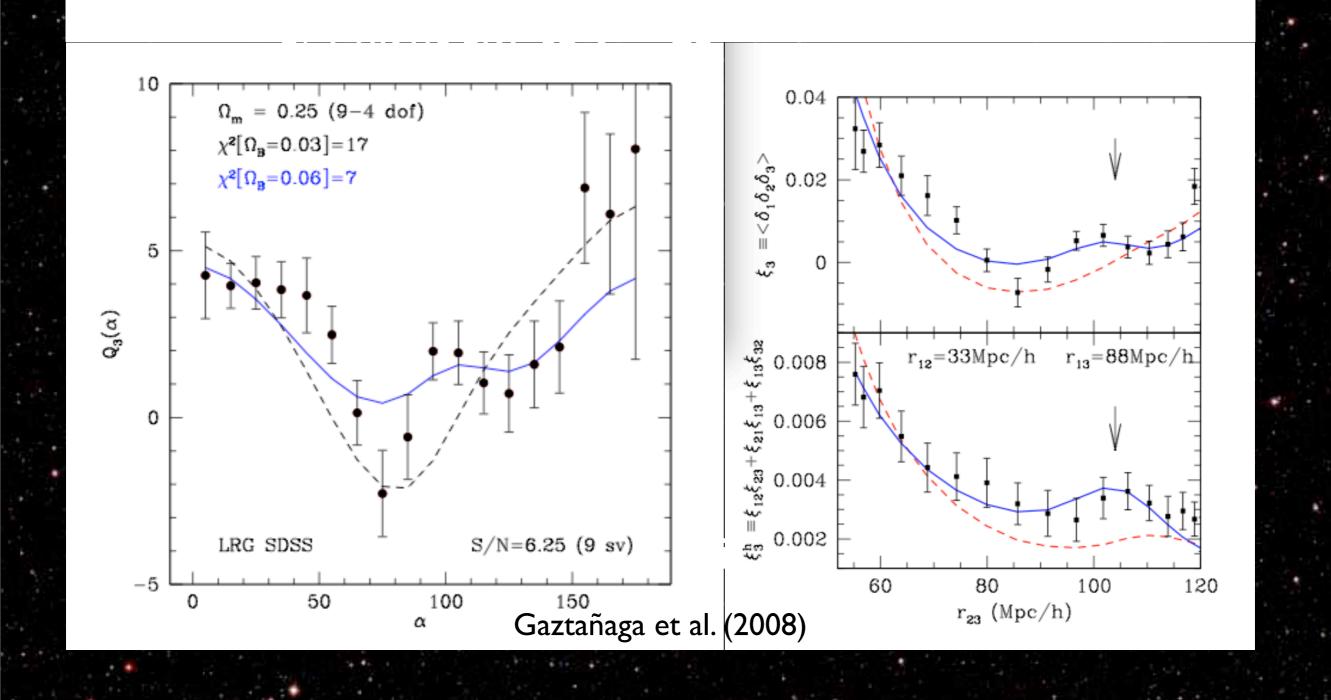
Results are Preliminary



Future Surveys

- Pan-STARRs
 - 3/4 night sky to $g \sim 23$
 - $1200 \text{ deg}^2 \text{ to } z \sim 1.5$
 - in calibration mode
- SDSS III BOSS
 - ~1.5 million LRGs with 0.4 < z < 0.7
- DES
 - $\sim 5000 \text{ deg}^2 \text{ to } z \sim 1.1$
- LSST
 - Half the night sky, 10 billion galaxies!
 - (First light 2014)

Future Surveys



Future Surveys

- Pan-STARRs
 - 3/4 night sky to $g \sim 23$
 - $1200 \text{ deg}^2 \text{ to } z \sim 1.5$
 - in calibration mode
- SDSS III BOSS
 - ~1.5 million LRGs with 0.4 < z < 0.7
- DES
 - $\sim 5000 \text{ deg}^2 \text{ to } z \sim 1.1$
- LSST
 - Half the night sky, 10 billion galaxies!
 - (First light 2014)

(Hopeful) Future of Nth-Order Correlation Functions

- Higher-order measurements become integral
 - Data, computing, human resources exist
 - Combined with 2-point, better constraints, more self-consistency → better science
- Challenges:
 - Urging patience and collaboration
 - Incorporating HOD in higher-order modeling (heavy lifting done in Smith et al. 2008)

To Do

Talk through out loud